Об органической фотовольтаике замолвите слово

Опубликовано 27.12.2013
Олег Фиговский   |   просмотров - 5466,   комментариев - 0
Об органической фотовольтаике замолвите слово

Олег Фиговский


В середине июля 2013 года в славном городе Эриче, что расположен вдали от цивилизации на горе на западе Сицилии, проходила прелюбопытнейшая научная школа «Наноструктуры для оптики и фотоники» (или Nano-Structures for Optics and Photonics). Одним из докладов по счастливому стечению обстоятельств оказался «Органическая фотовольтаика» (Organic photovotaic), представленный профессором Ули Лемерром (Uli Lemmer) из Института Технологий Карлсруэ (Karlsruhe Institute of Technology – KIT). Итак, быть или не быть «альтернативной» фотовольтаике?

Введение.

Пару месяцев назад была опубликована исполненная пиетета статья о солнечных элементах Гратцеля, но в комментариях я встретил закономерное недоверие и скепсис по поводу оправданности вложений в такие солнечные элементы. Основная мотивация оппонентов – недостаточная производительность или эффективность таких элементов по сравнению с кремниевыми, мол, EROI совсем плох. Хотя некоторые оценки собраны и представлены в Wiki, но это как средняя температура по больнице. А по сему, опираясь на данные представленные профессором Лемерром, я хотел бы рассказать чуть более подробно о «альтернативной» или, если угодно, не кремниевой фотовольтаике, но сначала всё же придётся окунуться в мир цифр для нормальных кремниевых батарей, чтобы понимать, к чему стремиться. И эта статья имеет своей целью некоторый обзор уже сформировавшегося рынка кремниевых солнечных элементов.

Сразу хочу сделать две немаловажные оговорки. Во-первых, KIT славится тем, что имеет фактически свои производственные линии, на которых зачастую обкатываются технологии, и мнение вышеупомянутого профессора, я полагаю, таки авторитетно. Во-вторых, ЕС диверсифицирует разработки, и это заложено во многих рамочных программах. Что же это значит? А значит это, что если даже вы разработали солнечную батарейку с КПД 5%, вы сможете получить финансирование на продолжение исследований, если, конечно, 5% не являются теоретическим (термодинамическим) пределом.

И последнее, я буду всё время это упоминать, так или иначе, по ходу повествования: стоимость инвестиций (Investment costs) в €/Вт, которая может быть уменьшена двумя способами – снижением стоимости производства или увеличением эффективности солнечных батарей.

Есть ли свет после кристаллического кремния?

Полагаю, что один из самых взвешенных обзоров на Хабре был подготовлен BarsMonster, поэтому долго на это теме останавливаться не будем.

Итак, что же такое «альтернативная» фотовольтаика в сравнении с «классической»? Или как разбить на поколения известные солнечные элементы? Это очень просто:

1. Солнечные элементы на базе кристаллического кремния (EFG – Edge Defined Film fed Growth, RGS – Ribbon Growth on Substrate). Самые древние, можно сказать каменные век. Первые разработки можно отнести к заре эры микропроцессорной техники – конец 60-х, начало 70-х.

2. Тонкоплёночные солнечные элементы, такие как аморфный кремний, кремниевые плёнки, различные варианты экологически «небезопасных», но интенсивно производящихся на настоящий день, на основе кадмия и теллура. Получили толчок к развитию вместе с кремниевыми, но лишь в конце 80-х, начале 90-х перешагнули 10% барьер эффективности.

3. Альтернативная фотовольтаика, включающая в себя DSSC (сенсибилизированные солнечные элементы или солнечные батареи Гратцеля), гибкие органические батареи (на основе олигомеров и полимеров), в том числе и тандемные солнечные элементы, а также диковинный пока подвид – солнечные элементы на основе квантовых точек (наноразмерных частиц полупроводников).

Фотовольтаика не совсем полно, но наглядно

И логичный вопрос: а где же тогда место этой альтернативной фотовольтаике? Как уже было сказано, в голове надо держать два параметра: эффективность и стоимость производства, что влечёт за собой удешевление электроэнергии, выработанной такой батареей в €/Вт. Как мы можем видеть из приведённых ниже графиков кристаллический кремний, пожалуй, по всем параметрам наиболее перспективный материал для солнечных элементов. Особенно в долгосрочной перспективе, когда его стоимость инвестиций может быть уменьшена до 50 центов и ниже за Вт. Однако стоит заметить, что получение такого высокочистого или «солнечного» кремния связанно с огромными экологическими рисками, о которых в ЕС и США особенно сильно пекутся. Ах, да, через пять минут будет сказано с саркастической улыбкой, что производство кадмий-теллуридных, CdTe, батарей растёт – парадокс, но оставим его на совести Гринписа и администрации стран-производителей…

 

Оценки эффективности и стоимости инвестиций для различных типов солнечных элементов в крастко-, средне- и долгосрочной перспективе

Конечно, на сегодняшний день даже аморфный кремний (производство дешевле и не требует «серьёзной химии») хоть по стоимости и сопоставим с кристаллическими аналогами, но всё ещё не обладает достаточной эффективностью, чтобы побороться за какой-то лакомый сегмент рынка. Но что интересно на этой диаграмме: некремниевые солнечные элементы изначально обладают гораздо более низкой стоимостью инвестиций и, соответственно, более низкой стоимостью полученной с их помощью электроэнергии. Это как раз и даёт надежду исследователям и инвесторам, что в будущем, можно за счёт использования таких процессов как roll-to-roll (читайте, как газету печатать) существенно снизить издержки при производстве таких элементов. Но об этом я расскажу во второй части, посвящённой альтернативам.

Пример солнечного элемента первого поколения – поликристаллический кремний

Но и это ещё не всё. В случае с гибкими солнечными элементами, а таких, большинство в группе альтернативных, есть очень много потенциальных областей применения: от умной одежды, которая будет заряжать ваш мобильник в солнечную погоду (например), до тентов и навесов, способных запитать небольшой чайник на природе.

 

Панели солнечных элементов второго поколения

С учётом специфических условий эксплуатации – в полях, так сказать – а также принимая во внимание стремление всех ведущих производителей мобильной техники уменьшить толщину смартфона или ультрабука в ущерб времени автономной работы, то согласитесь данный сегмент рынка может выстрелить очень и очень быстро.

Но вернёмся от фантазий о рае будущего на нашу грешную землю, точнее, к традиционным солнечным элементам.

Состояние современного рынка солнечной энергетики.

Что касается каких-то более точных цифр для солнечных элементов первого поколения, то они были представлены в виде понятного даже детям рисунка:

 

Номинальные параметры традиционных солнечных элементов

При этом стоимость модуля на 54 Вт обычно не превышает 60 евро, а каждый кВт*ч полученной энергии обходится потребителю менее чем в 50 центов. Сроки эксплуатации огромны – обычно это десятки лет (25-30 лет является нормативом), если не происходит чего-то экстраординарного – потопы, ураганы, русские крещенские морозы и т.д. Ну а затем батареи разбираются, перерабатываются и из них изготовляют новые.

Далее я хотел бы привести немного статистики. Конечно, доля моно- и поли-кристаллических батарей огромна и суммарно отъедает до 90% рынка, но посмотрите, как с начала 2000-х выросла доля CdTe-батарей (экологи – ха-ха), как медленно, но верно начали прорастать другие технологии, в том числе и альтернативные виды фотовольтаики (в данном случае отмечены, как others). И всё это происходит не в жирные годы экономического роста, когда деньги на научное колесо льются рекой, а сейчас, на наших глаза, когда в ЕС и США всё ещё продолжается рецессия.

 

Доли рынка солнечной энергетики для различных видов батарей

Что ж можно сравнить с данными, приводимыми в Wiki – хорошее совпадение:

 

Где и что производят и ставят?

Конечно, можно было бы уже догадаться, что, как и в известной шутке:
«– Какие три самые популярные слова на планете?
– Мир, труд, май
– Нет, Made in China», – большая часть производства солнечных элементов сосредоточена в Китае. По состоянию на 2011 год – больше половины всех произведённых модулей за тот год имеют шильдик: Made in China.

 

Годовое производство солнечных элементов первого поколения

Тогда как основной потребитель готовой продукции – это, как ни странно, матушка Европа. Среди европейских стран бесспорным лидером является Германия, вслед за которой в эру использования Солнца, как универсального источника энергии, пытается заскочить Италия, что обусловлено, по большому счёту, благоприятным климатом. Хотя, например, на Сицилии, где проводилась школа, преимущество отдано ветрякам.

Хочется также заметить, что, например доля Испании, где климат благоприятствует развитию солнечной энергетики, практически не наращивает установленной мощности солнечных элементов с 2008 года, тогда как даже Китай существенно увеличил этот параметр за тот же период.

 

Суммарная установленная мощность солнечных элементов первого поколения

Коль скоро Германия в ЕС является наиболее значимым потребителем альтернативных источников энергии, в целом, и солнечной, в частности, то за прошедшие семь лет можно оценить степень падения цен на модули. Так если средняя розничная цена системы, устанавливаемой на крышу, была около 5100 евро за кВт пиковой мощности, то во втором квартале 2013 года она упала до 1700 евро. В три раза за семь лет! Неплохой результат, надо отметить.

Так же хотелось бы обратить внимание на четвёртый квартал 2008 года. В США полыхает кризис, в ЕС закрываются банки, казалось бы, цены должны остаться на уровне Q4 2008 и никуда не двигаться, ведь предприятия закрыты, пароходы списаны, а денег в банках нет. Но оказалось совершенно наоборот, через год после начала кризиса цена упала на 30% до менее 3000 евро за КВт.

 

Стоимость кВт пиковой мощности в евро в течение последних 7 лет без учёта НДС, так как НДС может меняться даже между федеративными землями в ФРГ

И в заключении хотелось бы представить расчёты стоимости выработанной электроэнергии такими кремниевыми солнечными элементами. Если взять представленные выше суммы за солнечную панель, срок службы солнечной панели в 20 лет, 5% в год затраты (например, 4% процент по кредиту и 1% стоимость обслуживания самой батареи), то получится следующее распределение стоимости произведённой электроэнергии центах за кВт*ч:

 

Стоимость выработанной солнечной панелью электроэнергии в центах за кВт*ч: по горизонтали – средняя степень освещённости местности, по вертикали – рыночная стоимость солнечной панели в долларах за кВт пиковой мощности


Промежуточное заключение.

Что же мы имеем в итоге? На данный момент рынок кремниевой «классической» солнечной энергетики сформирован, доля кристаллического кремния составляет более 90%, и основных игроков на нём уже трудно будет потеснить (а в основном это Китай, ЕС, Япония и США).

Какова цель или почему государства «донатят» программы по солнечной энергетики? Причина довольно прозрачна: максимально диверсифицировать структуру энергопотребления, развить технологии и, в ряде случаев (Германия, например), снизить зависимость экспорта из соседних регионов (из России, в частности).

Как в этих условиях жить и развиваться «альтернативным» типам солнечных элементов, о которых было упомянуто в самом начале? Есть ли место в тени поликристаллического кремния? Или всё это баловство, которое ни к чему не приведёт? Я постараюсь дать ответ через призму тех технологий, что разрабатываются в настоящий момент.

 

Конечно, сейчас сложно говорить о каких-то конкретных цифрах, потому что сам рынок ещё формируется: спрос и предложение не уравновешено, технологии только-только перебираются из лабораторий на экспериментальные заводские площадки. Однако, как мы увидели на примере кристаллического кремния, в такой период времени очень сложно говорить о будущем технологии (помните, что цена на поликристаллические солнечные элементы упала в три раза за семь лет?!).

А по сему, я постараюсь описать в большей степени не экономику производства и эксплуатации DSSC или органических солнечных батарей (ведь опять начнутся разговоры про EROI), а то, какой потенциал в них заложен и какие технологии применяются, чтобы сделать цену конечных устройств настолько малой, насколько это вообще возможно.

3-е поколение: будущее уже здесь!

Пожалуй, начнём мы по традиции, с некоторого ретроспективного анализа эффективности солнечных элементов, подготовленного NREL – The National Renewable Energy Laboratory.

 

Ретроспективный анализ наилучших показатели эффективности солнечных элементов всех известных типов

На графике приведен целый класс «emerging PV», т.е. та самая группа альтернативных методов, которые могут выстрелить в любой момент. Но начнём по порядку.

Roll-to-Roll process или напечатай меня как газету.

Пожалуй, одной из наиболее значимых характеристик третьего поколения солнечных элементов является то, что их можно печатать.

Стоит пояснить. Для двух предыдущих поколений солнечных элементов, чтобы получить работающую панель необходимо создать, так или иначе, p-n-переход , а это значит, что необходимо высоковакуумное оборудование, герметичность производственной линии и так далее по списку – всё как во взрослой жизни. При этом пластина едет по конвейеру от одного конца до другого, прирастая p-n-переходами и контактами. Есть ещё и проблема совмещения (или алаймента) масок, используемых для травления и создания 3D структуры (фактически, как в процессорах, только техпроцесс не нанометры, а микрометры и миллиметры). И как бы было хорошо всё это безобразие заменить на что-нибудь попроще…

О чудо, такой процесс уже используется десятилетиями для печати полиграфической продукции. С небольшими модификациями мы могли бы заменить чернила на какие-нибудь фотоактивные органические молекулы – полупроводники и проводники – а рисунок на барабане разбить на соответствующие отдельным фотоэлементам площадки. И, вуаля, штампуй – не хочу!

При этом можно существенно уменьшить как вес таких элементов, так и количество используемых материалов, ведь в кремниевой батарее кремний является и подложкой и активным компонентом, а сделать подложку бесконечно тонкой невозможно, она обязана обладать хоть каким-то минимальным набором механических характеристик.

Как же это работает на практике?! В том же KIT есть не так называемый «центр трансфера технологий», а совершенно настоящий и работающий, в котором осуществляются:

исследования, направленные на улучшение характеристик батарей, при этом существует прямая обратная связь с учёными и инженерами, разрабатывающими технологии;

участок прототипирования, который отрабатывает принципиальную масштабируемость технологии;

уже полупромышленный участок, где за пару минут можно сделать погонные метры и сотни метров солнечных элементов.

 

Структура трансфера технологий из лаборатории на производство. KIT и TU Darmstadt совместно с BASF, Merck

Заметьте, центр не просто при двух университетах, но в нём активно участвуют производители, которые, возможно, раньше или позже запустят эти разработки на своём производстве. И одной из наиболее значимых областей применения данного процесса является как раз органическая фотовольтаика.

Органическая фотовольтаика.

Как бы ни смешно это прозвучало, но в мире органической химии царит своя атмосфера безудержного веселья. Например, среди органических молекул можно найти изоляторы, проводники, полупроводники и – даже страшно подумать – сверхпроводники. Некоторое время назад вообще считали, что органические материалы вытеснят всё, в том числе и бетон, и арматуру, и машины будут из карбона…но не сложилось…

Как мог бы выглядеть органически фотоэлемент?! И каковая может быть его толщина?
Например, если хотите, то толщиной в 1 микрометр (в 50 раз тоньше человеческого волоса!):

 

Устройство отдельного органического солнечного элемента и материалы, используемые для его создания

Обычно требуется, чтобы акцептор электронов (absorber) и молекулы донора (hole conductor) взаимно проникали друг в друга, формируя так называемый объёмный гетеропереход (bulk heterojunction). Так как реакция разделения электрон-дырочной пары происходит на поверхности, то за счёт взаимного проникновения двух фаз одна в другую и увеличивается эффективная площадь контакта (показано на картинке справа), а это в свою очередь соответствует максимальной эффективности такой батареи.

Подложка не обязательно должна быть стеклянной: и катод и анод могут быть выполнены по любой доступной технологи, в том числе и на основе проводящих полимеров, что позволяет в полной мере реализовать преимущества roll-to-roll process.

Да, к глубокому сожалению, должен констатировать, что эффективность у данных батарей не велика до 7-8%, но это всё из-за того, что представленные выше молекулярные мотивы не поглощают во всём диапазоне длин волн от УФ (ультрафиолетового, 300-400 нм) до ИК (инфракрасного 800-1000 нм).

С одной стороны это является проблемой, необходимо придумывать более хитрые схемы с двумя совмещёнными батареями, так называемые тандемные солнечные элементы (tandem solar batteries), либо просто сделать батарею полупрозрачной и наклеить на окно.

В случае с тандемными солнечными элементами мы просто имеем два последовательно подключённых солнечных элемента, которые поглощают в двух разных диапазонах, например, зелёном и красном. За счёт этого фактически удваивается эффективность, потому что больше фотонов превращается в ЭДС и ток. Однако главная проблема в данном случае – промежуточный слой, необходимый для комбинирования избыточных зарядов. Понятно, что если слой будет накапливать заряд, то из-за внутренних потерь это снизит эффективность.

 

Принцип работы тандемной солнечной батареи: два последовательно соединённых органических солнечных элемента

 

Пример спектра поглощения двух органических веществ, используемых при производстве тандемных солнечных элементов

На этом моменте можно было бы углубиться в материаловедение, но я этого не буду делать, просто хочу сказать несколько слов в защиту высокоэффективных батарей и процесса их разработки, что это не пустая трата бюджетных средств. Нельзя просто так взять, намазать пасту ровным слоем на подложку, потом второй слой, третий, наклеить контакты и сказать, что готово, приговаривая: «Ладно, и так сойдёт!». И не будем показывать пальцем, где этим любят позаниматься. Но за каждым процентом эффективности стоят патенты, специальные добавки, меняющие упаковку молекул таким образом, чтобы добиться наилучшего проникновения одного компаунда в другой. Для того, чтобы описать такие процессы, почему вещество А помогает, а вещество Б нет, крайне необходима фундаментальная наука со всеми её недостатками, пороками и установками, стоимостью в миллионы и миллиарды долларов.

Dye Sensitized Solar Cell (DSSC).

Солнечные батареи, сенсибилизированные или «активированные» красителем, известны миру достаточно давно. Однако лишь недавно они смогли успешно взять психологически важный барьер в 15% эффективности. На в настоящее время это является абсолютным рекордом среди солнечных батарей данного класса. Принцип работы батарей детально представлен в указанной выше публикации, поэтому не будем на нём останавливаться.

Обычно для производства DSSC необходима стеклянная подложка с токопроводящим покрытием, как то ITO (оксид олова, допированный индием) или FTO (оксид олова, допированный фтором), что отъедает существенную часть расходов на производство. Однако стоит справедливо заметить, что данные батареи потенциально могут быть адаптированы к печати посредством процесса roll-to-roll, о котором говорилось выше.

И вновь хочется повториться, что область применения таких элементов питания не генерация МВт электроэнергии, а скорее эстетично-практичная, как и в случае с прозрачными органическими батареями – снижении общего энергопотребления, при сохранении высоких стандартов жизни. То есть наклеили батарею на окно, она вам за сутки АКБ зарядила, к примеру…

Пока готовилась данная статья, неожиданно пришло известие с пометкой срочно в номер!

 

Строящийся сейчас конференц-центр EPFL (SwissTech) оснастят стеклянным фасадом на основе DSSC. Прозрачные разноцветные панели солнечных элементов Гратцеля в данный момент устанавливаются на западной стороне SwissTech центра, открытие которого запланировано на апрель 2014 года. Солнечными батареями, общее число которых составляет 1400 штук при размерах 35 на 50 см, оснастят более 300 м2 фасада здания. Сами элементы выполнены в пяти оттенках красного, зелёного и оранжевого цветов, что, по мнению архитекторов и дизайнеров, создаёт тёплый и в то же время живой внешний вид.

Стоит отметить, что проект такого рода – первый в мире. Солнечные элементы сконструированы таким образом, что не теряют эффективности при изменении угла падающего на них солнечного света, к тому же они не только позволяют вырабатывать электричество, но и защищать внутренние помещения от прямых солнечных лучей, что приведёт к снижению потребность в кондиционировании воздуха. Сообщается также, что не менее 11 фирм-производителей уже получили лицензию на производство солнечных батарей Гратцеля.

И на последок, чтобы не быть голословным, приведу несколько примеров компаний, которые работают в области альтернативных солнечных элементов:

Konarka. Компания просуществовала с 2001 по 2012 года и занималась как DSSC, так и органическими солнечными батареями на основе фуллеренов. За время своего существования компания создала 350 патентов в рассматриваемой области, привлекла более 150 млн. $ частных инвестиций и 20 млн. $ государственных грантов на разработку и организацию производства. Были разработаны солнечные элементы с гарантированным сроком службы 3 года при зарегистрированной эффективности в 8%. К сожалению, в середине 2012 года компания объявила о банкротстве.

Heliatek. Компания основана в 2006 году специализируется на органической фотовольтаике, но держится на плаву более успешно. В числе прочих достижений тандемные батареи с эффективностью 12% за счёт правильно подобранной геометрии:

 

Слайд с сайта компании Heliatek

И между прочим в ближайшие 4 года эффективность планируется увеличить до 16%:

 

Слайд с сайта компании Heliatek

Что же касается DSSC, то даже такие гиганты, как Sony и Samsung обращают своё внимание в сторону DSSC, при чём планируется, что массовый выпуск продукции позволит сократить до 1/3–1/5 стоимость модулей по сравнению с обычными кремниевыми батареями. В Соединённом Королевстве есть множество компаний, занимающихся данной тематикой (например), так что про умельцев из Поднебесной я вообще промолчу (например).

Вместо заключения.

Вначале я хотел написать объёмное заключение, что «альтернативной» некремниевой фотовольтаике – быть, что важны технологии, и как они связывают воедино разные области знаний, в конечном продукте, но…

Безусловно, я согласен с BarsMonster, что главная проблема сегодняшней альтернативной энергетики (любой!!!, попрошу заметить) – хранение произведённой электроэнергии и, главное, стоимость такого хранения. Или иными словами непостоянство данного источника. Это не АЭС, которыми в Бельгии дороги освещают даже днём. Однако мне кажется, что мы не вполне верно рассматриваем структуру энергопотребления с нашей сложившейся уже точки зрения, вот где кроется основной порок всех холиваров на данную тему. Необходимо изменить своё сознание и посмотреть на проблему абстрагированным взглядом.

Но, как бы ни парадоксально и вычурно это звучало, мы живём в эпоху поистине великого перехода от века кремния, к веку углерода; и те тенденции, которые сейчас мы наблюдаем (графен, УНТ, органические светодиоды и органическая фотовольтаика), тому весомое доказательство. Пройдёт ещё совсем немного времени, и ни одно здание не будет спроектировано (по крайней мере, в ЕС, США, Японии) без солнечных панелей Гратцеля на окнах, способных ощутимо снизить и практически привести к нулю энергобаланс сооружений. Задняя панель iPhone или моей Xperia Z покроется двухмикронной органической батарей, которая будет подзаряжать телефон везде, где есть источник света, а электромобили вообще превратятся в одну большую передвигающуюся солнечную батарею. И я хотел бы оказаться в этом энергетическом раю, где энергия Солнца доступна всем и каждому…


Комментарии:

Пока комментариев нет. Станьте первым!